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ABSTRACT

Recent calculations by Quataert and coworkers found that the growth rates of the magnetorotational
instability (MRI) in a collisionless plasma can differ significantly from those calculated usingMHD. This can
be important in hot accretion flows around compact objects. In this paper we study the transition from the
collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth
rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of colli-
sions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to
the parallel wavelength 2�=kk. In the weak magnetic field regime where the Alfvén and MRI frequencies !
are small compared to the sound wave frequency kkc0, the dynamics are still effectively collisionless even if
!5 �, so long as the collision frequency �5 kkc0; for an accretion flow this requires �d�

ffiffiffi
�

p
. The low colli-

sionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes
damping of long-wavelength modes, which may be important for the nonlinear saturation of theMRI.

Subject headings: accretion, accretion disks — MHD — plasmas

1. INTRODUCTION

Balbus & Hawley (1991) showed that the magnetorotational instability (MRI), a local instability of differentially rotating
magnetized plasmas, is the most efficient source of angular momentum transport in many astrophysical accretion flows (see
Balbus & Hawley 1998 for a review). The MRI may also be important for dynamo generation of galactic and stellar magnetic
fields. Most studies of the MRI have employed standard MHD equations which are appropriate for collisional, short mean
free path plasmas. Recently, however, Quataert, Dorland, & Hammett (2002, hereafter QDH02) studied the MRI in the
collisionless regime using the kinetic results of Snyder, Hammett, & Dorland (1997). They showed that the MRI persists as a
robust instability in a collisionless plasma, but that at high �41 (ratio of plasma pressure to magnetic pressure), the physics of
the instability is quite different and the kinetic growth rates can differ significantly from theMHD growth rates.

One motivation for studying the MRI in the collisionless regime is to understand radiatively inefficient accretion flows onto
compact objects. An example of nonradiative accretion is the radio and X-ray source Sagittarius A*, which is thought to be
powered by gas accreting onto a supermassive black hole at the center of our galaxy (see Quataert 2003 for a review). In
radiatively inefficient accretion flow models, the accreting gas is a hot, low-density plasma, with the proton temperature large
compared to the electron temperature (Tp � 1012 K4Te � 1010 1011 K). In order to maintain such a two-temperature
configuration, the accretion flow must be collisionless in the sense that the timescale for electrons and protons to exchange
energy by Coulomb collisions is longer than the inflow time of the gas (for models of Sagittarius A*, the collision time close to
the black hole is�7 orders of magnitude longer than the inflow time).

In this paper we extend the kinetic results of QDH02 to include collisions; we study the behavior of theMRI in the transition
from the collisionless regime to the collisionalMHD regime. Instead of using a more accurate but very complicated Landau or
Balescu-Lenard collision operator, we use a simpler Bhatnagar-Gross-Krook (BGK) collision operator (Bhatnagar, Gross, &
Krook 1954) that conserves number, momentum, and energy.

There are several reasons for studying the behavior of the MRI with collision frequency. (1) One gains additional
understanding of the qualitatively different physics in theMHD and kinetic regimes. (2) One of the key differences between the
MRI in kinetic theory andMHD is the anisotropic (with respect to the local magnetic field) pressure response in a collisionless
plasma (QDH02). Even if particle collisions are negligible, high-frequency waves with frequencies approximately the proton
cyclotron frequency may tend to isotropize the proton distribution function. Our treatment of ‘‘ collisions ’’ can qualitatively
describe this process as well. (3) Finally, the transition from the collisional to the kinetic MRI could be dynamically interesting
if accretion disks undergo transitions from thin disks to hot radiatively inefficient flows (as has been proposed to explain, e.g.,
state changes in X-ray binaries; Esin, McClintock, & Narayan 1997). For example, there could be associated changes in the
rate of angular momentum transport (�).

The paper is organized as follows. In the next section (x 2) we briefly discuss the linearized kinetic equations in the long-
wavelength, low-frequency limit (the ‘‘MHD ’’ limit); this is a review of the formalism used by QDH02. In x 3 we then derive
the kinetic equation for the perturbed pressure including effects of proton-proton collisions via a BGK operator; this result is
needed to ‘‘ close ’’ our basic equations and derive the dispersion relation for the plasma. In x 4 we discuss simpler Landau fluid
(Snyder et al. 1997) closure schemes for deriving the perturbed pressure. The Landau fluid closure approximations agree well
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with the exact kinetic results from x 3 in the low- and high-collisionality regimes and provide a smooth transition for
intermediate regimes. In x 5 we numerically solve for the growth rate of the kinetic MRI and discuss the effects of collisions.
Finally, in x 6 we summarize our results and discuss their astrophysical implications.

2. LINEARIZED KINETIC MHD EQUATIONS

The analysis in this paper is restricted to fluctuations that have wavelengths much larger than proton Larmor radius and
frequencies well below the proton cyclotron frequency. In this limit, a plasma can be described by the following magnetofluid
equations (Kruskal & Oberman 1958; Rosenbluth &Rostoker 1959; Kulsrud 1983):

@�

@t
þ

D

x �Vð Þ ¼ 0 ; ð1Þ

�
@V

@t
þ � V x

D

ð ÞV ¼

D

� Bð Þ � B

4�
�

D

xP þ Fg ; ð2Þ

@B

@t
¼

D

� V � Bð Þ ; ð3Þ

P ¼ p?I þ pk � p?
� �

b̂bb̂b ; ð4Þ

where � is the mass density, V is the fluid velocity, B is the magnetic field, Fg is the gravitational force, b̂b ¼ B=jBj is a unit
vector in the direction of the magnetic field, and I is the unit tensor. In equation (3) an ideal Ohm’s law is used, neglecting
effects such as resistivity. The pressure tensor P has different perpendicular (p?) and parallel (pk) components with respect to
the backgroundmagnetic field (unlike inMHD, where there is only a scalar pressure). The pressures are determined by solving
the drift kinetic equation given below. In general, P should be a sum over all species, but in the limit where ion dynamics
dominate and electrons just provide a neutralizing background, the pressure can be interpreted as the ion pressure. This is the
case for hot accretion flows in which Tp4Te.

We assume that the background (unperturbed) plasma is described by a nonrelativistic Maxwellian distribution function
with equal parallel and perpendicular pressures (temperatures). Although the equilibrium pressure is assumed to be isotropic,
the perturbed pressure is not. We take the plasma to be differentially rotating, but otherwise uniform (we neglect temperature
and density gradients). Equilibrium analysis for equation (2) in presence of a subthermal magnetic field with vertical
(Bz ¼ B0 sin �) and azimuthal (B� ¼ B0 cos �) components gives a Keplerian rotation (� / R�3=2) provided the magnetic field
is sufficiently weak (B2

05GM0�0=R, whereM0 is the mass of the central object).
In a differentially rotating plasma, a finite BR leads to a time-dependent B�, which greatly complicates the kinetic analysis

(unlike in MHD, where a time-dependent B� can be accounted for; Balbus & Hawley 1991); we therefore set BR ¼ 0. For
linearization we consider fluctuations of the form exp �i!tþ ik xxð Þ, with k ¼ kRR̂Rþ kzẑz, i.e., axisymmetric modes; we also
restrict our analysis to local perturbations for which jkjR41. Writing � ¼ �0 þ ��, B ¼ B0 þ �B, p? ¼ p0 þ �p?, and
pk ¼ p0 þ �pk, V ¼ �̂��Rþ �v [with Keplerian rotation �ðRÞ], and working in cylindrical coordinates, the linearized versions
of equations (1)–(3) become (QDH02):

!�� ¼ �0k x �v ; ð5Þ

�i!�0�vR � �02��v� ¼ � ikR
4�

Bz�Bz þ B��B�

� �
þ ikzBz�BR

4�
� ikR�p? ; ð6Þ

�i!�0�v� þ �0�vR
	2

2�
¼ ikzBz�B�

4�
� ikz sin � cos � �pk � �p?

� �
; ð7Þ

�i!�0�vz ¼ � ikzB��B�

4�
� ikz sin2 ��pk þ cos2 ��p?

� �
; ð8Þ

!�BR ¼ �kzBz�vR ; ð9Þ

!�B� ¼ �kzBz�v� �
ikzBz

!

d�

d lnR
�vR þ B�k x �v ; ð10Þ

!�Bz ¼ kRBz�vR ; ð11Þ

where 	2 ¼ 4�2 þ d�2=d lnR is the epicyclic frequency. To complete our system of equations and derive the dispersion
relation for linear perturbations, we need expressions for �p? and �pk. These can be obtained by taking moments of the
linearized and Fourier transformed drift kinetic equation that includes a linearized BGK collision operator. The drift kinetic
MHDmodel is described by Kulsrud (1983) based on earlier work by Kruskal & Oberman (1958) and Rosenbluth &Rostoker
(1959). The drift kinetic equation for the distribution function including the effects of gravity is

@f

@t
þ ðvkb̂bþ vEÞ x

D

f þ �b̂b x
DvE
Dt

� lb̂b x

D

Bþ e

m
Ek þ

Fgk

e

� �� �
@f

@vk
¼ C fð Þ ; ð12Þ

where vE ¼ c E � Bð Þ=B2, l ¼ ðv? � vEÞ2=2B is the magnetic moment (conserved in our approximations in the absence of
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collisions), Fgk ¼ GM0mR̂R x b̂b=R2, andD=Dt ¼ @=@tþ ðvkb̂bþ vEÞ x

D

. The fluid velocity V ¼ vE þ b̂buk, so the E � B drift vE is
determined by the perpendicular component of equation (2). (Only the E � B drift appears directly in equation [12]. Other
drifts such as the grad B, curvature, or gravity � B drifts are higher order in the MHD drift kinetic ordering [Kulsrud 1983],
which assumes the frequencies are low compared to the cyclotron frequency and the gyroradius small compared to gradient
scale lengths. On the other hand, the parallel component of the gravitational force Fgk is included, as it can be the same order
as the parallel electric field, which is small compared to the perpendicular electric field in ideal MHD.) Note the addition of a
collision operator on the right hand side of the kinetic equation to allow for generalization to collisional regimes. In the next
section we derive the linearly exact kinetic expressions for �pk and �p? using the BGK collision operator in equation (12). We
then compare these with closure approximations from Snyder et al. (1997).

3. KINETIC CLOSURE INCLUDING COLLISIONS

In this section we use a simple BGK collision operator (Bhatnagar et al. 1954) to calculate �pk and �p? from equation (12).
Since we consider only ion-ion collisions, the BGK operator is CK fð Þ ¼ �� f � FMð Þ, where � is the ion-ion collision
frequency and FM is a shifted Maxwellian with the same density, momentum, and energy as f (so that collisions conserve
number, momentum, and energy). The integro-algebraic BGK operator greatly simplifies the calculations while adequately
modeling many of the key properties of the full integro-differential collision operator. In some situations the effects of weak
collisions can be enhanced in a more complete collision operator because of sharp velocity gradients in the distribution
function.We leave investigation of such effects for future work. In this section, we calculate the linearization of the drift kinetic
equation around an accretion disk equilibrium including equilibrium flows and gravity. It turns out that a number of
complicating intermediate terms end up cancelling, and the final forms of the closures used (from eqs. [26]–[27] onward) are
identical to what one would get from perturbing around a simple stationary slab equilibrium.We carried out the more detailed
calculation to verify that there were no missing terms in the final closures.

The equilibrium distribution function f0 is given by

f0 ¼
n0

ð2�T0=mÞ3=2
exp � m

2T0
jv� V0j2

� �
; ð13Þ

where V0 ¼ vE0
þ uk0b̂0b0 is equal to the Keplerian rotation velocity in }̂} direction. Since jv� V0j2 ¼ ðvk � uk0Þ2 þ 2lB0, f0 can

be expressed in terms of l; vk
� �

as

f0 ¼
n0

2�T0=mð Þ3=2
exp � m

2T0

�
ðvk � uk0Þ2 þ 2lB0

	
 �
: ð14Þ

We linearize the drift-kinetic equation and the BGK collision operator. The distribution function is given as f ¼ f0 þ �f ,
where �f is the perturbation in the distribution function. The shiftedMaxwellian that appears in the BGK collision operator is
given by

FM ¼ NM

2�TM=mð Þ3=2
exp � m

2TM

�
ðvk � ukMÞ2 þ 2lB

	
 �
: ð15Þ

The Maxwellian FM has three free parameters (NM, ukM, TM), which are to be chosen so as to conserve number, parallel
momentum, and energy. When taking moments of the BGK operator, it is important to note thatR
d3v ¼

R
2� B0 þ �Bð Þdl dvk. From equation (15) and conservation of number, momentum, and energy it follows that

NM ¼ n0 þ �n � n0 1þ �B

B0

� �
þ 2�B0

Z
dldvk�f ; ð16Þ

NMukM ¼ NMðuk0 þ �uÞ � n0uk0 1þ �B

B0

� �
þ 2�B0

Z
dl dvk�fvk ; ð17Þ

NMTM ¼ p0 þ �p ¼ p0 þ ð�pk þ 2�p?Þ=3 ; ð18Þ

�pk � p0�B=B0 þ 2�B0

Z
dl dvk�fmðvk � uk0Þ2 ; ð19Þ

�p? � 2p0�B=B0 þ 2�B0

Z
dl dvk�f lmB0 ; ð20Þ

where the approximate expressions retain only linear terms in perturbed quantities. Linearizing the expression for the relaxed
Maxwellian in equation (15) about f0, the drift kinetic BGK collision operator is given by

CK �fð Þ ¼ ���f þ �f0 �
�n

n0
� 3�T

2T0

� �
þ m

T0
vk � uk0
� �

�uþ vk � uk0
� �2 �T

2T0

� �
�mlB0

T0

�B

B0
� �T

T0

� �
 �
: ð21Þ
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The drift kinetic equation including the BGK operator can be linearized to obtain the following equation for �f

�f ¼ u�0 vk � uk0
� �
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þ
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eEk þ Fgk
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T0
�ml�B

T0

" #
; ð22Þ

where Fgk ¼ GM0m�BR=B0R2 is the component of gravitational force in the direction of magnetic field. Choosing a compact
notation in which �i! sin � �B� sin �� �Bz cos �

� �
mu�0=eB0 þFgk=eþ Ek ! Ek, the moments of the perturbed distribution

function �f in drift coordinates ðvk; lÞ,
R �

1; 2lB0; ðvk � uk0Þ2
�
�f 2�B0dldvk give
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2
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Here Ek can be eliminated by taking appropriate combinations of these three equations, leaving

��

�0
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T0
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and

1þ 2
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where �T ¼ 2�T? þ �Tk
� �

=3, �B ¼ b̂b0 x �B, 
 ¼ !þ i�ð Þ=
ffiffiffi
2

p
jkkjc0, 
2 ¼ i�=

ffiffiffi
2

p
jkkjc0, kk ¼ b̂b0 xk, Tk;? ¼ mpk;?=�, and

c0 ¼ T0=mð Þ1=2 is the isothermal sound speed of the ions. In equations (26) and (27), R ¼ 1þ 
Z is the plasma response
function, where

Z 
ð Þ ¼ 1ffiffiffi
�

p
Z

dx
exp �x2ð Þ
x� 


ð28Þ

is the plasma dispersion function (Huba 2000). Equations (26) and (27) can be substituted into the linearized fluid equations in
x 2 to derive the dispersion relation for the plasma. The full closures are, however, very complicated, so it is useful to
consider several simplifying limits that isolate much of the relevant physics. In addition, the solution of the MHD equations
from x 2 with fully kinetic closures will give an implicit equation for the growth rate (involving theZ function) that would have
to be solved numerically.

The closure equations can be simplified in two limits, j
j5 1, the collisionless limit, and j
j41, the high-collisionality limit.
The derivation of the asymptotic solution for the closure equations in these two limits is given in the Appendix. For high
collisionality,
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2
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; ð30Þ

where 
1 ¼ !=
ffiffiffi
2

p
jkkjc0. Note that in the limit that the collision frequency is very high, 
2 ! 1, and one recovers the MHD

result that the perturbations are adiabatic and isotropic: �pk=p0 ¼ �p?=p0 ¼ 5��=3�0. Inspection of equations (29) and (30)
suggests that the MHD limit will be reached whenever j
1=
2j5 1, i.e., �4!. Later we show that, in fact, �4

ffiffiffi
2

p
jkkjc0 is
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required; i.e., the collision time must be much less than the sound crossing time of the wavelength of the mode. This is
important because theMRI has !5 jkkjc0 in a high-� plasma, so the regime !5 �5 jkkjc0 is an interesting one.

For low collisionality, j
j5 1, to second order in 
,
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: ð32Þ

To first order, there is no effect of collisions on the growth rate of the MRI; the results above are then exactly same as
equations (20) and (21) in QDH02 (who neglected collisions entirely). Collisional effects modify the closure only at order 
2,
although one has to go to this order to find the first-order dependence of ! on � in the dispersion relation.

4. COMPARISON WITH LANDAU FLUID CLOSURES

The results from the last section provide useful expressions for �p? and �pk in the low- and high-collisionality regimes,
j
j5 1 and j
j41, but it would be convenient to have a single set of equations that can provide a robust transition between
these two regimes. The Snyder et al. (1997) closure approximations, which we discuss in this section, can do this.

The second moments of the drift kinetic equation (eq. [12]) yield evolution equations for �p? and �pk (see, e.g., eqs. [16]–[17]
of Snyder et al. 1997). The linearized versions of these equations, including a BGK collision operator, are given by1

�i!�pk þ p0ik x �vþ ikkqk þ 2p0ikk�vk � 3p0� cos �
�BR

B0
¼ � 2

3
�ð�pk � �p?Þ ð33Þ

and

�i!�p? þ 2p0ik x �vþ ikkq? � p0ikk�vk þ
3

2
p0� cos �

�BR

B0
¼ � 1

3
� �p? � �pk
� �

: ð34Þ

As is usual with moment hierarchies, the above equations for �pk;? depend on third moments of the distribution function, qk
and q?, the parallel and perpendicular heat fluxes. Snyder et al. introduced closure approximations for qk and q? that
determine �p? and �pk without solving the full kinetic equations of the previous section. These Landau fluid approximations
‘‘ close ’’ equations (1)–(4) and allow one to solve for the linear response of the plasma.

The linearized heat fluxes in the perpendicular and parallel directions are given by

q? ¼ �p0c
2
0

ikk �p?=p0 � ��=�0ð Þ� ffiffiffiffiffiffiffiffi
�=2

p
jkkjc0 þ �Þ

ð35Þ

and

qk ¼ �8p0c
2
0

ikk �pk=p0 � ��=�0
� �

ffiffiffiffiffiffi
8�

p
jkkjc0 þ 3�� 8ð Þ�

� 	 : ð36Þ

As discussed in earlier work (Snyder et al. 1997; Hammett et al. 1993; Hammett, Dorland, & Perkins 1992; Smith 1997),
Landau fluid closure approximations provide n-pole Padé approximations to the exact plasma dispersion function Zð
Þ that
appears in the kinetic plasma response of x 3. These Padé approximations are thus able to provide robust results that capture
kinetic effects such as Landau damping, and that can also smoothly transition between the high and low 
 regimes.2 We have
found that, not surprisingly, the fluid approximations remain robust when collisions are included. That is, in all of the
numerical tests we have carried out, we have found good agreement between the results from equations (33)–(36) and the
asymptotic kinetic results from the previous section for the low- and high-collisionality regimes. Thus, all of the plots in this
paper are calculated with the Snyder et al. (1997) Landau fluid closure approximations of equations (33)–(36).

The Snyder et al. Landau fluid closure approximations provide a useful way to extend existing nonlinear MHD codes
to study key kinetic effects. The closure approximations are independent of frequency (or the Z function), and so are straight-
forward to implement in an initial value nonlinear code (although they do require FFTs or nonlocal heat flux integrals to eval-
uate some terms [Snyder et al. 1997; Hammett et al. 1992]). However, one should remember that they are approximations and
so do not accurately model all kinetic effects in all regimes, particularly near marginal stability (Mattor 1992; Smith 1997;

1 A comparison of our eqs. (33) and (34) with eqs. (30) and (31) in Snyder et al. shows that our equations have an extra term proportional to the Keplerian
rotation frequency; this is because Snyder et al. (1997) did not include gravitational effects andKeplerian rotation in their linearized equations.

2 The approximations are fairly good near or above the real 
 axis, although they will have only a finite number of damped roots, corresponding to the finite
number of poles in the lower half of the complex plane, while the full transcendentalZð
Þ function has an infinite number of damped roots.
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Dimits et al. 2000), although we have generally found in other applications that they work fairly well in strong turbulence
regimes (Hammett et al. 1993; Parker et al. 1994; Smith 1997; Dimits et al. 2000).

As an aside, we note that the double adiabatic theory of Chew, Goldberger, & Low (1956), which is a simpler closure
approximation that sets qk ¼ q? ¼ 0 in equations (33) and (34), generally does a poor job of reproducing the full kinetic
calculations. This is because the perturbations of interest have !5 jkkjc0 and are thus far from adiabatic (see also QDH02).

5. COLLISIONALITY DEPENDENCE OF THE MRI GROWTH RATE

Figures 1 and 2 show the growth rate of the MRI for intermediate values of collisionality in addition to the limits of zero
and infinite (MHD) collision frequency (the latter two cases were shown in QDH02). To produce these plots, we have used
equations (5)–(11) and (33)–(36). These equations were solved both with a linear initial value code to find the fastest growing
eigenmode, and withMATHEMATICA to find the complete set of eigenvalues !.

Figures 1 and 2 show that the transition from the MHD to the collisionless regime is fairly smooth and occurs, for these
particular parameters, in the vicinity of �=� � 103, which corresponds to � � 10kc0, or k�mfp � 0:1, where �mfp ¼ c0=� is the
mean free path. Figure 3 shows the growth rate versus collisionality for �z ¼ 100 and �z ¼ 104, and for B� ¼ Bz, kR ¼ 0 and
B� ¼ 0, kR=kz ¼ 0:5.

It is clear from these figures that the transition from the collisionless to the collisionalMRI takes place at far higher collision
rates than � � � � !. That is, � > ! is not a sufficient criterion to be in the collisional regime. Instead, the collisional regime
requires �4jkkjc0, which can be written as �=�4

ffiffiffi
�

p
jkkjvAz=� �

ffiffiffi
�

p
. Figure 3 shows that the much of the dependence on

collisionality for different values of �z can be captured by plotting the growth rates versus �= �zð Þ1=2�, although there is some
residual variation.

At high �41, the Alfvén and MRI frequencies are small compared to the sound wave frequency, and there exists a regime
!5 �dkkc0 where the collisionless results still hold despite the fact that the collision time is shorter than the growth rate of the
mode. Physically, this is because in order to wipe out the pressure anisotropy that is crucial to the MRI in a collisionless
plasma (see QDH02) the collision frequency must be greater than the sound wave frequency, rather than the (much slower)
growth rate of the mode. This can also be seen by comparing Figures 1 and 2 with the corresponding figures in QDH02: the
effect of increasing collisions (decreasing pressure anisotropy) is similar to that of decreasing �z (decreasing pressure force
relative to magnetic forces). From the point of view of the Snyder et al. (1997) fluid approach, the weak dependence of growth
rate on collisionality even if � is as large as ! can be understood from the fact that the terms proportional to ! and � in
equations (33) and (34) are both much smaller than the dominant terms involving convection, heat conduction, and magnetic
forces. So the relative magnitudes of ! and � are not that important, and it is not until � is large enough to be relevant in
equations (35)–(36) that collisional effects become noticeable.

Figure 4 shows the complete spectrum of eigenmode frequencies as kz is varied, including the propagating and damped
modes in addition to the unstable MRI branch. We show all of the waves present in collisionless Landau fluid and MHD cal-
culations for a fairly general choice of wavenumbers and amoderate �z ¼ 10. TheMRI is operational at lower kz, while at high
kz the eigenfrequencies eventually approach the uniform plasma limit.

Focusing first on the MHD solutions at high kz, we see the standard set of three MHD waves: in order of descending
frequency these are the fast magnetosonic wave, the shear Alfvén wave, and the slow wave. Equations (5)–(11) with an MHD
adiabatic pressure equation !�p ¼ p0k x �v is a set of eight equations with eight eigenvalues for !. The standard three MHD
waves provide six of the eigenvalues (�! for oppositely propagating waves). The remaining roots are zero frequency modes
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Fig. 1.—Growth rates of the MRI as a function of kR=kz for different collision frequencies; �z ¼ 104 and B� ¼ 0 (left), B� ¼ Bz (right). For �=� � 104 the
growth rates are very close to the MHD values, while for �=� � 102 they are quite similar to the collisionless limit. The enhancement of the growth rate in the
collisionless regime for small kR is the result of pressure anisotropy.
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(not shown in the plot). One is an entropy mode, corresponding to ��=�0 ¼ ��T=T0 so that �p ¼ 0. The other solution
corresponds to an unphysical fluctuation that violates

D

xB ¼ 0, which is eliminated by imposing the proper initial condition
that

D

xB ¼ 0. At lower kz in the MHD plots in Figure 4, it is the slow mode that is destabilized to become the MRI, as
discussed in Balbus &Hawley (1998).

Turning next to the collisionless limit in Figure 4, there are two roots plotted in addition to the three ‘‘MHD-like ’’ modes;
this is because the single pressure equation of MHD is replaced by separate equations for the parallel and perpendicular
pressure, so that there are now two entropy-like modes, both of which have nonzero frequencies but which are also strongly
damped by collisionless heat conduction (which is neglected inMHD).3

The fast, Alfvén, and slow waves in the collisionless calculation can again be identified in order of descending (real)
frequency at high kz. At lower kz, one of the slow modes becomes destabilized to become the MRI, as in MHD. Unlike in
MHD, however, the fast magnetosonic waves are strongly Landau damped, since the resonance condition ! � kkc0 is easily
satisfied. In addition, it is interesting to note that both the shear Alfvén and slow waves have some collisionless damping at the
highest kz used in this plot, although the damping will approach zero for very high kz. In a uniform plasma the shear Alfvén
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Fig. 2.—Growth rates of theMRI as a function of kz for different collisionalities
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�

p
.

3 We should point out that while our equations using the Snyder et al. (1997) 3+1 Landau fluid closure approximations have eight eigenfrequencies, the
equations using the more accurate 4+2 Landau fluid closure approximations have 10 eigenfrequencies, with two additional strongly damped roots. If the exact
kinetic response were used, one would find an infinite number of strongly damped eigenmodes because the Zð
Þ function is transcendental. These strongly
dampedmodes are related to ‘‘ ballistic modes ’’ and transients in the standard analysis of Landau damping.
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wave is undamped unless its wavelength is comparable to the proton Larmor radius or its frequency is comparable to the
proton cyclotron frequency (neither of which is true for the modes considered here). By contrast, the slow mode is strongly
damped unless k?5 kk (e.g., Barnes 1966; Foote & Kulsrud 1979). The damping of small kz shear Alfvén waves in Figure 4 is
due to the fact that our background plasma is rotating so the uniform plasmamodes are mixed together. Thus, the well-known
dissipation of the slow mode by transit-time damping also leads to damping of what we identify as the shear Alfvén wave
(based on its high-kz properties).

6. SUMMARY AND DISCUSSION

In this paper we have extended the linear axisymmetric kinetic magnetorotational instability (MRI) calculation of QDH02
to include the effect of collisions. The MHD limit is recovered when the mean free path is short compared to the MRI
wavelength, i.e., �4kkc0, with a fairly smooth transition between the collisionless and collisional regimes. Interestingly the
collisionless MRI results hold not only if �5!, but even when !5 �5 kkc0. This intermediate regime can exist in �e1
plasmas because theMRI growth rate is slow compared to the sound wave frequency, ! � kkvA ¼ kkc0

ffiffiffiffiffiffiffiffi
2=�

p
5 kkc0.

If we consider the application of our results to accretion flows, the collisionless limit will be applicable so long as �=�d
ffiffiffi
�

p
.

This condition is amply satisfied for proton-proton and proton-electron collisions in all hot radiatively inefficient accretion
flow models, suggesting that the collisionless limit is always appropriate. However, high-frequency waves such as ion-
cyclotron waves can isotropize the proton distribution function and thus provide an effective ‘‘ collision ’’ term crudely
analogous to that considered here. It is difficult to estimate the importance of this process (e.g., whether its effective collision
frequency is e�

ffiffiffi
�

p
) because we don’t know to what extent high-frequency waves will be excited in the accretion flow. They

are probably not significantly excited by the underlying MHD turbulence that drives accretion since this maintains
low frequencies throughout the turbulent cascade (see Quataert’s 1998 discussion based on Goldreich & Sridhar 1995).
High-frequency waves may, however, be excited by shocks, reconnection events, or velocity space anisotropies.

One might anticipate that the linear differences between the collisionless and collisional MRI highlighted here and in
QDH02 will imply differences in the nonlinear turbulent state in hot accretion flows (see, e.g., Hawley & Balbus 2002;
Igumenshchev, Abramowicz, &Narayan 2003 forMHD simulations of such flows). Not only are there differences in the linear
growth rates of the instability that drives turbulence, but the spectrum of damped modes is also very different. In particular, in
the kinetic regime there exist modes at all scales in jkj that are subject to Landau/Barnes collisionless damping, while in the
MHD regime the only sink for turbulent energy is due to viscosity/resistivity at very small scales (very high jkj). Indeed, as we
have shown, even long wavelength Alfvén waves can be damped by collisionless effects because of the mixture of uniform
plasma modes in the differentially rotating accretion flow (x 5 and Fig. 4). Whether these differences are important or not may

 

Fig. 4.—Real and imaginary parts of the mode frequency as a function of kz using (a, b) collisionless Landau fluid closures and (c, d ) MHD are shown
(� ¼ 0, kRvAz=� ¼ 0:5, �z ¼ 10, B� ¼ 0). The following symbols are used: d, damped slow mode; g, growing slow mode; e1 and e2, entropy modes; A1 and
A2, Alfvén modes; f1 and f2, fast modes.
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depend on how efficiently nonlinearities couple energy into the damped modes. These could modify the nonlinear saturated
turbulent spectrum (e.g., the efficiency of angular momentum transport) or the fraction of electron versus ion heating (the
heating may also be anisotropic), which in turn determine the basic observational signatures of hot accretion flows (the
accretion rate and the radiative efficiency). One approach for investigating nonlinear collisionless effects would be to extend
existing MHD codes to include anisotropic pressure, the Snyder et al. (1997) fluid closure approximations for kinetic effects,
and the BGK collision operator considered here. By varying the collision frequency, one can then scan from the collisionless
kinetic to the collisional MHD regime, and assess any differences in the nonlinear turbulent state.

We thank W. Dorland, P. B. Snyder, and W. Tang for useful discussions. This research was supported by NASA grant
NAG 5-12043, D.O.E. Contract No. DE-AC02-76CH03073, NSF grant AST-0206006, and an Alfred P. Sloan Foundation
Fellowship (to E. Q.).

APPENDIX A
CLOSURE FOR HIGH COLLISIONALITY: j
j41

For j
j41, Z 
ð Þ � �1=
 � 1=2
3 � 3=4
5, R � �1=2
2 � 3=4
4, 1þ 2
2R � �3=2
2 � 15=4
4, Z � 2
R � 1=
3 þ 3=
5.
Equation (26) then becomes

�n

n0
� �p?

p0
¼ � �B

B0
1þ 1

2
2

� �
� 
2



1þ 1

2
2

� �
�T

T0
� �B

B0

� �
: ðA1Þ

Assuming j
1=
2j5 1 (a high-collisionality limit !5 �) and using the binomial expansion, we get

�n

n0
� �p?

p0
¼ � 1� 
1


2
þ 1


22

1

2
þ 
21
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1
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1

2
þ 
21
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1

2

�B
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þ �T

T0

� �
: ðA2Þ

To the lowest nonvanishing order one gets

�n

n0


1

2
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1

3
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3
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2

� �
þ
�pk
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1

3
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2
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Expanding equation (27) gives

� �n
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� �
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Again using the binomial expansion for j
1=
2j5 1 we get
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The lowest order solution is

� 3
1
2
2

�n

n0
þ 1

3
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1
2
2
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�pk

p0
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1
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�B

B0
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We expand the parallel and perpendicular pressure perturbations as �p? ¼ �0p? þ 
1=
2�1p? þ ð
1=
2Þ2�2p? þ . . . and
�pk ¼ �0pk þ 
1=
2�1pk þ ð
1=
2Þ2�2pk þ . . .. From equations (A2) and (A5) one gets �0pk=p0 ¼ �0p?=p0 ¼ 5�n=3n0 for the
lowest order, and ð�p? � �1pkÞ=p0 ¼ 3�B=B0 � 2�n=n0. To the next order we can expand the solution as

�pk

p0
¼ 5�n

3n0
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1

2

�1pk
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1


2
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To the next order in 
1=
2 in equation (A2) one gets

� 1

2
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�n
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�1pk
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3
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To the next order in equation (A5) we get

2þ 1

3
21

� �
�n

n0
�
�1pk
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þ 1

3

�2pk
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p0
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: ðA10Þ

Equations (29) and (30) follow from equations (A9) and (A10).
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APPENDIX B
CLOSURE FOR LOW COLLISIONALITY: j
j5 1

This regime is useful for low collisionality �5 kkc0 and high �, where the MRI is at low frequency compared to the sound
wave frequency. Using the asymptotic expansion for j
j5 1, Z 
ð Þ � i

ffiffiffi
�

p
1� 
2ð Þ � 2
 and R 
ð Þ � 1þ i

ffiffiffi
�

p
� 2
2, we simplify

equation (26) to get
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� �
: ðB1Þ

The lowest order term in 
 gives �p?=p0 ¼ �n=n0. Let �p?=p0 � �n=n0 þ 
�1p?=p0. To the next order one gets
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Therefore to second order in 
, �p?=p0 � �n=n0 � i
ffiffiffi
�

p

1�B=B0 þ 
2�2p?=po. On using the asymptotic formula for Z and R in

equation (27), one gets
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To the lowest order one gets �pk=p0 ¼ �n=n0, so let �pk=p0 � �n=n0 þ 
�1pk=p0. To the next order,
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1
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Therefore, through second order �pk=p0 � �n=n0 þ i
ffiffiffi
�

p

1 �B=B0 � �n=n0ð Þ þ 
2�2pk=p0. The comparison of the terms of the
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2 in equation (26) give
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and the terms of the order 
2 in equation (27) give


2
�2pk

p0
¼ 4
1
2 � �
21 �

7�

6

1
2

� �
�n

n0
þ
� ffiffiffi

�
p


1
 �
�

6

1
2 � 2
2 � 4
2


�
�B

B0
: ðB6Þ

From equations (B5) and (B6) the asymptotic expansion in equations (31) and (32) follow.
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